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1 Introduction

What we now call the Brownian motion of microscopic particles was described for
the first time in 1828 by the botanist Robert Brown.! Some sixty years later, Golly
correctly attributed? the phenomenon to the thermal motion of the surrounding
liquid molecules. It was observed at an early stage?:3 that Brownian movement is
most lively with small particles in liquids of low viscosity, and that Brownian drift
velocities are some 10® times smaller than typical molecular velocities. Roughly
speaking, particles can be defined as Brownian if they are larger than normal
solvent molecules (or ions), but still small enough to be perturbed appreciably by
solvent molecular motion. This puts them in the colloidal size range (1 nm—1 pum).

This article is concerned with the behaviour of proteins viewed as small colloidal
particles. What follows is a description of how certain aspects of protein dynamics
can be treated theoretically as problems which are soluble with the help of a
computer. To establish our frame of reference, let us begin by listing some biological
processes where we might tentatively expect Brownian motion to be a significant
factor: (i) protein adsorption at a cell surface; (ii) the encounter between enzyme
and substrate molecules; (iii) the interaction of an antibody with an antigen; (iv)
protein mobility in a membrane, or along a fibre; (v) biochemical assembly by
monomer aggregation or polymerization, and (vi) protein unfolding and
denaturation. The common element in these processes is a kinetic stage which is
diffusion controlled; and it is this element which we wish to emphasize here.

In chemistry and biology, the complexities of macroscopic change are driven by
two types of physical events: time-reversible ones, which obey the classical laws
(Newton’s equations of motion), and time-irreversible ones, which obey
probabilistic laws having their origin ultimately in the Second Law of
Thermodynamics.* Generally speaking, systems containing a small number of
interacting objects are time reversible, and those containing a very large number
are time irreversible. The dynamics of a few interacting Brownian particles
immersed in an inert fluid medium (millions of molecules) can be regarded as being
partly deterministic (reversible) and partly chaotic (irreversible). The deterministic
part of the motion arises from interparticle colloidal forces (electrostatic, van der
Waals, etc.) and the influence of external fields (magnetic, gravitational, ezc.). The

! R. Brown, Ann. d. Phys. u. Chem., 1828, 14, 294.

2 M. Goiiy, J. Physique (Paris), 1888, 7, 561.

3 F. M. Exner, Ann. Phys., 1900, 2, 843.

* 1. Prigogine and I. Stengers, ‘Order out of Chaos’, Heinemann, London, 1984,
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chaotic part of the motion is associated with fluctuating Brownian forces from the
apparently random thermal motion of the solvent molecules. The random impacts
of surrounding molecules also give rise to frictional forces acting on the particles.
Since the size of these frictional forces is dependent on the relative separations of the
particles, it is found that the Brownian motions of the different particles, whilst
remaining irregular, are in fact statistically coupled via the fluid medium.

The description of condensed matter of interest here is one combining Brownian
motion with continuum hydrodynamics. The subject of Brownian motion deals
with such entities as colloidal particles, diffusion coefficients, and statistical
probabilities; hydrodynamics, on the other hand, is concerned with macroscopic
bodies, steady flow, and continuum dynamics. Bring the two together and, to coin a
phrase, we get Brownian dynamics. This is a kinetic theory essentially diffusive in
character, but also including the effects of particle interactions, both hydro-
dynamical and colloidal. Brownian dynamics is appropriate for describing protein
motions over distances which are large compared with the solvent molecular size,
and times which are long compared with the interval between successive solvent
impacts.

In practice, most Brownian dynamics problems of chemical interest are not
amenable to analytic solutions, but can be solved numerically using a computer.
The usefulness of computer simulation in describing the dynamics of proteins is
becoming increasingly recognized,’>~” if not quite yet universally accepted.® A great
strength of simulation, sometimes called ‘computer experiment’, is that it enables
one to follow the consequences of changing certain variables independently in a
way not possible often in a real experiment. In outlining suitable models for protein
simulation, we shall be concerned here with emphasizing the underlying physical
features. Necessarily, this will be at the expense of omitting some of the biochemical
ramifications—although, in principle, the approach is sufficiently general to include
all detailed aspects if the time and trouble are taken to put them in.

2 Basic Principles

Although Brownian-dynamics computer simulation is a relatively new field of
study, it is based on some old and well-established principles. We begin our discus-
sion of the theoretical background by mentioning the major historical contributions.

A. Einstein’s Equation.—In his classic paper on Brownian movement, published
in 1905, Einstein showed ° that the average displacement x,, of a tagged particle in
one-dimensional projection follows equation 1

X, = ((x*H) = 2D} O]

5 J. A. McCammon and M. Karplus, Ann. Rev. Phys. Chem., 1980, 31, 29.

¢ M. Karplus, Ber. Bunsenges. Phys. Chem., 1982, 86, 386.

7J. A. McCammon, Rep. Prog. Phys., 1984, 47, 1.

8 A. Cooper, Prog. Biophys. Molec. Biol., 1984, 44, 181.

® A. Einstein, Ann. Phys., 1905, 17, 549 (English translation: ‘Albert Einstein, Investigations on the Theory
of Brownian Movement’, ed. R. Fiirth, Dover, New York, 1956). See also: A. Pais, ‘“Subtle is the
Lord...”, The Science and Life of Albert Einstein’, Oxford University Press, New York, 1982, chap. 5.
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where ¢ is time, D is a diffusion coefficient, and (x2?) is the mean-square
displacement in the x-direction. As each cartesian direction is equivalent, it follows
that

) = + G + (22 = K (2

where r is the total instantaneous distance travelled by the particle in time z. The
crux of the derivation of equation 1, set out briefly below, is the recognition that the
time-dependent probability distribution for random movement of a single particle
is mathematically equivalent to the development of the concentration profile in
bulk diffusion.

Imagine a large number n of identical non-interacting* particles. They are
accumulated at time ¢ = 0 in the immediate vicinity of the plane at x = 0, and then
left to themselves. The change in local particle density p(x,?) at position x and time ¢
is described by the differential equation

dp/ot = D(9%p/ox?) 3)

known usually as Fick’s Second Law of Diffusion.!® The density profile is found by
solving equation 3 subject to boundary conditions,

pxo =0, {&F2YL=0 @

and a normalization condition, equation 5.

+o0
J p(x,)dx =n (5)
As material has an equal chance of diffusing to the left (— x) or right (+ x), the mean

displacement {x) is obviously zero. The developing profile from equations 3—S5Sisa
normal distribution centred at x = 0:

p(x,f) = n(4nDe)* exp (—x2/4D1) ©)

Combining equation 6 with the definition of the mean-square displacement,
equation 7,

(xPy = n? f N p(x,0)x? dx (@)

©

gives Einstein’s equation (equation 1) after integration.

* All real particles do, of course, interact strongly at close range. The theoretical position can be realized in
the laboratory, however, if we imagine that the particles are so widely distributed in the y—z plane that pairs
have negligible chance of colliding during the time-scale of observation.

10 A. E. Fick, Philos. Mag., 1855, 10, 30.

423



Brownian Dynamics with Hydrodynamic Interactions

A weakness in Einstein’s original derivation, pointed out by Fiirth,!! is the
necessity to invoke a time interval 1 which is small compared with ¢, but
nevertheless of such magnitude that movements executed by a particle in two
successive intervals t are considered as mutually independent. When the time for
particle motion is short, this assumption is no longer valid. Under these
circumstances, {x2) is properly given by!!:!2 equation 8

{x*» = 2D[t — mp + exp(—t/my)] ®

where m is the particle mass, and p is a coefficient of mobility defined below.
Einstein’s equation holds for ¢ > mp. This lower limit of time validity increases
with the square of the particle size (asm oc d®> and p oc d!);itis ca. 10-7 sfora 1 um
neutrally-buoyant particle in water at room temperature.

B. Friction and Mobility Coefficients.—From chaotic Brownian motion, we now
turn to the subject of steady hydrodynamic flow.!3

When a small constant force F is applied to a macroscopic body immersed in a
hydrodynamic fluid, it rapidly attains a constant velocity v given by

v = puF ©

where 1 is a mobility coefficient. Under steady-state conditions, the applied force is
exactly counterbalanced by a frictional force f:

F=—f=20 (10)

So the friction coefficient { is simply the reciprocal of u. Both are related to the size
and shape of the body, and the viscosity of the fluid, and the above equations
provide the physical basis for determining macromolecular size and shape from
techniques such as centrifugation or electrophoresis. Although strictly applicable
only to objects in the macroscopic domain, there is a long history of successful
application of hydrodynamic theory down to particles of the size of sucrose
molecules.!?

Whether one chooses to work in terms of friction or mobility coefficients is
largely a matter of convenience. The distinction is trivial in equations 9 and 10, but
more complicated for objects of arbitrary shape in the vicinity of other like objects.
The magnitude of the friction (or mobility) coefficient then depends on the forces
acting on all the objects immersed in the fluid, and mathematically this means that
scalar quantities i and { must be replaced by tensors p and £. Analogously, the
scalar diffusion coefficient is replaced by a diffusion tensor D.

C. Langevin’s Equation—The one-dimensional motion of an isolated Brownian

11 R. Fiirth, Z. Phys., 1920, 2, 244.
12 L. S. Ornstein, Proc. Amst., 1918, 21, 96.
13 J. Happel and H. Brenner, ‘Low Reynolds Number Hydrodynamics’, 2nd edn., Noordhoff, Leiden, 1973.
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particle is described by the simple Langevin equation'*

m(dv/dr) = —Co + R(t) (11)

where R(?) represents a random force due to solvent collisions. Equation 11 is an
example of a stochastic equation of motion. It is nothing more than Newton’s
equation of motion (mass x acceleration = force) plus a random term. The latter is
normally assumed to satisfy two conditions: firstly, that the process R(?) is
Gaussian, and, secondly, that its correlation time is infinitely short, i.e.,

CR(1)R(12)> = 2mGd(ty — 1) (12)

where ¢, and ¢, are two times, G, is a constant, and 8(x) is the Dirac function
[defined as JS(x)dx =1 for x =0, 6(x) = 0 for x # 0]. It turns out that the

Gaussian assumption holds for a particle of mass much larger than that of the
solvent molecules, a condition which is readily satisfied for a globular protein in
water.

The Langevin approach enables a link to be formed between a statistical
quantity R and a hydrodynamic quantity {, leading to a formal expression for the
diffusion coefficient (in velocity space) D,

m?D, = j (ROYR(D)) dt = kT (13)
0

From equations 12 and 13 we see that G, = (kT/r), and so the stochastic term is

given by

C(ROR()> = 2kTL3() (14

Equation 14 is one of the most fundamental relationships in statistical mechanics.
Commonly known as the fluctuation—dissipation theorem,!’ it expresses a
relationship between hydrodynamic dissipation and an ensemble average over
fluctuations in the system. It is readily generalized to three dimensions, and the
nature of the random force is independent of any systematic forces acting on the
particles, whether they arise from interactions with other particles or from the
influence of an external field. It also applies to rotational motion.!3

3 Diffusion

A. Phenomenological Coefficients.—As applied to one-dimensional mass

transport, Fick’s First Law of Diffusion states® that the mass flux J, in direction x is

given by

14 S, Chandrasekar, Rev. Mod. Phys., 1943, 15, 1 (reprinted in: ‘Selected Papers on Noise and Stochastic
Processes’, ed. N. Wax, Dover, New York, 1959).

15 R. Kubo, Rep. Prog. Phys., 1966, 29, 255. For rotational applications see: J. McConnell, ‘Rotational
Brownian Motion and Dielectric Theory’, Academic Press, London, 1980.
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Jx = —D(@p/dx) (15)

where D is a phenomenological coefficient, and p is the local density of the diffusing
species. In three dimensions, we have

J=—DVp (16)

where V is the del operator defined by

V = i(0/0x) + j(0/dy) + k(0/0z) an

and i, j, and k are unit vectors in x, y, and z directions.

Consider a large number of identical particles far enough apart in a fluid that
they do not interact in any way. Each particle requires six independent parameters
[4:(i = 1,6)] to specify its instantaneous configuration. Three parameters define
position (x,y,z), and three define orientation (¢,, ¢,, ¢.). When Fick’s Law is
generalized to position—orientation space, each diffusive flux J; (i = 1,6) is linearly
related to each density gradient (3p/dg;) (j = 1,6) by the phenomenological equation

Ji = —D;{0p/dq;) (18)

where D;; is now an element in a 6 x 6 matrix called the diffusion tensor, and p is
the instantaneous particle density in position—orientation space. We represent the
change in particle position during a small time interval d¢ by the vector

dr = idq, + jdq, + kdq, = idx + jdy + kdz (19)

where dx, dy, and dz are the projections of the displacement vector onto the
cartesian axes. Similarly, the change in orientation is represented by the vector *

de = idg, + jdqs + kdgs = ide, + jdg, + kdo, (20)

where do,, do,, and de, denote projections onto the cartesian axes. In the same
way that D in equation 15 has a statistical interpretation in terms of the Einstein
equation (equation 1), we shall find that each of the elements in the diffusion
tensor D defined by equation 18 also has a statistical interpretation.

B. An Isolated Spherical Particle.—The simplest possible system consists of a single,
hard, spherical particle immersed in a quiescent hydrodynamic medium. Let us
suppose that, during some small but finite time interval, the co-ordinates of the
particle centre have moved from (x, y, z) to (x + Ax,y + Ay,z + Az). In the
absence of any external forces, the mean-square Brownian displacements in the
three directions are given by

{(Ax)*) = L(A»)*) = K(82)*) = 2DTAt (21

* Unlike dr, do is a vector only for infinitesimal displacements.
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where D7 is a scalar translational diffusion coefficient. For a sphere of radius ain a
medium of Newtonian viscosity n, DT is given by the well-known Stokes-Einstein
equation

DT = kT/C" = kT/6mna 22)

where (T is the translational friction coefficient. During the same time interval At,
the Brownian sphere will also have rotated through angles Ag,, Ap,, and Ag, about
axes parallel to the x, y, and z directions, respectively. Mean-square displacements
are given by

((49)*> = {(89,)*> = {(Ap,)*) = 2DRA: (23)

where DR is the rotational diffusion coefficient:

DR = kT/8nna® 24)

Comparing equations 22 and 24, we see that rotational motion decreases much
more strongly with increasing particle size than does translational motion.
In position—orientation space, the generalized Einstein equation has the form

{AqAq;> = 2D;;At (25)

In matrix notation, the diffusion tensor D = [D;;] for a single sphere has non-zero
elements only along the leading diagonal, ie.,

D11 Dy2 Dy3 Dys Dys Dys
D31 D3z D33 Dia Dys Dag
D31 D3z D33 Dia D3s Dig
D4y D4z Dy3 Day Das Das
Ds; Ds; Ds3 Dss Dss Dsg
D¢y Ds2 Dé3 Des Des Des

(26)

0
It
Il
coocooty
coocoyo
coomgoo
]
cogooo
=
ongoococo
gooooo

The off-diagonal elements are all zero because each of the three translational and
three rotational degrees of freedom is completely independent for a single
spherically-isotropic particle:

(Ardr) = (Arde) = (AohAg) =0 (1<i#j<3) @7

C. An Isolated Non-spherical Particle—Irrespective of the shape of a particle, the
diffusion matrix [D;;] is always symmetric and positive-definite (ie., D = D,
where t denotes the matrix transpose).* The 6 x 6 diffusion matrix in position—
orientation space can be partitioned into four 3 x 3 submatrices:

* A symmetric tensor (matrix) is a square matrix which is equal to its transpose. The franspose matrix is
formed by interchanging rows and columns. A symmetric tensor T is positive-definite if v- T+v > 0 for any
non-zero vector v. (See Appendix for summary of rules of tensor multiplication.)
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D- [D ' D GT] 28)

D' is a (symmetric) translational diffusion tensor of the form:

14 D‘ L
11 Dy2 Dhys
D' = Y1 Dha Dbhs 29)
DYy, DYy, Dj;

It describes the translational Brownian motion of some point P rigidly fixed in the
particle according to the equation

(ArAr)> = 2DTAL (i = 1,3) (30)

where the superscript P on D{f now denotes the fact that, since a body rotates as
it moves, the translational diffusion coefficient depends on the location of P.
Analogously, the (symmetric) rotational diffusion tensor D" governs the rotational
Brownian motion according to

(ApAg;y = 2DjAL (i = 13) @an

And a coupling tensor D° describes the correlation between translational and
rotational displacements:

(AgAr)y = 2DFPAL (ij = 1,3) (32

Again the superscript P on D{f denotes a dependence of the tensor on the
location of point P.

The values of D' and D° corresponding to two different points on the particle, P
and Q, are related by'®

D' — D = (DF x rpg) — (rpq X D) — (rpq X D" X rpq) 33)

D — DF = D" x rpq (34)
where rpq is the position vector from P to Q, and x represents the usual vector
cross-product (see Appendix). Any rigid particle possesses a unique point O, its

centre of diffusion, for which D° is symmetric (i.e., D°© = D°"). The exact location
of O is given by

reo = (TtD) — D] - €:D? 35)
where TrD" represents the trace of tensor D' (the sum of terms on the leading
diagonal, ie., D}, + D5, + Dj;). The quantity / in equation 35 is the unit tensor
(identity matrix) defined by
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(36)

—~
I
oo -
o - o
- o

The quantity e is a totally antisymmetric third-rank tensor (3 x 3 x 3) known as
the Levi—Civita density; in matrix notation, €;; is defined by £,,3 = €31, = €33, =
1, €,5, = €337 = €33 = — 1, and zero elsewhere.

For a particle that is spherically isotropic,* Brownian diffusion is completely
described by just two scalar coefficients DT and D®:

D° =D", D =DM, D®=0 37

But, even for a sphere, we note that D¢ vanishes only at the centre. Many globular
proteins are roughly ellipsoidal in shape with diffusion tensors of the form:

DGO 0 D0 0O
D°=| 0 DHO , D’=| 0 D% 0 » D=0 (38)
0 0 DY 0 0 D

As with spheres and ellipsoids, so for a large class of particle shapes: at the centre of
diffusion, translational and rotational motions are uncoupled, with corresponding
fluxes, J* and J', given by

J'= —D*-(dp/r), J' = —D"+(3p/O9) (39

A non-vanishing coupling tensor is associated with a screw-like behaviour of the
diffusing particle. With biopolymers possessing helicoidal symmetry about a single
axis (say the x-axis), the coupling of translational and rotational motions is
described by a single scalar coefficient D€ defined by!¢

(AxA¢,> = +2DCAt (40)

where the algebraic sign on the right of equation 40 depends on the handedness of
the enantiomorph. Interesting academically, but apparently not biologically, is the
class of isotropic helicoids,!®

D° =D, D' =DM, D® =D @1)
which includes the spherical isotropic particle as a special case (D¢ = 0).

D. A Spherical Particle Near a Plane Surface.—Moving from the unbounded fluid
medium, let us now consider the case of a spherical Brownian particle near a solid
plane wall. Making the spatial environment of the particle asymmetric has its effect
* In this special category of geometrical objects are the sphere and the five regular polyhedra (tetrahedron,

cube, etc.).
16 H. Brenner, J. Colloid Interface Sci., 1967, 23, 407.
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on the diffusion tensor D. If the x-axis passes through the particle centre O
perpendicular to the surface (see Figure 1), diffusion in the x-direction is slower
than in the y- or z-directions (DY, < D3 = DY), and depends on the distance /
between O and the surface. At the same time, rotational diffusion about the x-axis is
faster than rotational diffusion about the y- or z-axes (D}, > D3, = D5;). The
origin of these differences lies in a spatially-dependent slowing down of diffusive
motion, translational, and rotational, due to hydrodynamic forces between the
surface of the colloidal particle and the boundary wall (vide infra). In crude physical
terms, we might say that the particle moves slower than it would do in an
unbounded fluid because some extra thermal driving energy has to be used to push
fluid from (or pull fluid into) the region between the particle and the surface. This
extra work against the fluid resistance becomes greater with decreasing separation
L

~
[/ LSS

Figure 1  Spherical particle with centre O at distance | from a plane surface. The translational
displacement Az is positively correlated with the rotational displacement Ag,

With the isolated sphere, translational and rotational Brownian motion were
completely independent (see equation 37). This is no longer the case in the presence
of the surface. For example, a positional displacement Az becomes positively
correlated with an angular displacement Ag,, and the correlation is total in the limit
of the sphere touching the plane (/ — a), when the particle can only move in a
rolling motion. The single-particle diffusion tensor therefore has the following
form:
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DO 0 0 0 0
0 D 0 0 0 Dy
10 0 Dyuo Do
D=19 0 0 Dwo o “2)
0 0 Ds3 0 Dss O
0 DGZ 0 0 0 055

with D,, = Dj;, Dss = Des, D,s = Dg = —D35 = —Dsj.

4 Hydrodynamics

In connection with the Brownian movement of small particles, we are nearly always
concerned with hydrodynamics at low Reynolds number. That is to say, viscous
forces from local shearing motions of the fluid are assumed to predominate over
inertial forces associated with acceleration of the fluid elements. Strictly speaking,
inertial forces exist to some small finite extent in all moving systems, but they can be
neglected for the systems considered here.

A. Isolated Particles.—Frictional forces and torques exerted on a rigid
macroscopic body are linearly related to translations and rotations by the friction
tensor §. This 6 x 6 matrix can be decomposed into a3 x 3 translational tensor &',
a 3 x 3 rotational tensor ', and a 3 x 3 coupling tensor g°:!”

B Cl Cct (43)
o-[2 ]
If we consider a point P on an isolated particle moving in an otherwise undisturbed

fluid with rotational velocity w and translational velocity vp, the frictional force on
the particle is given by

f=-T%—-C" o 44)

where as before the superscript P denotes a dependence on the location of P.* The
frictional torque about P is given by

=0 -Cfw 45)

where ', like C°, is position-dependent. Every isolated rigid particle has a unique
geometrical point, O, its centre of reaction, for which the coupling friction tensor is
symmetric, i.e.,

g = gt (“6)

* When the particle moves irrotationally, all points necessarily have the same translational velocity. As fis
also independent of where P is located, this means that L' has no position dependence. (Note the contrast
here with D' which is position-dependent.)

17 H. Brenner, Chem. Eng. Sci., 1964, 19, 599.
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But the centre of reaction is not necessarily located in the same place as the centre of
diffusion.

At low Reynolds number, diffusion and friction tensors are related by a
generalized Stokes—Einstein equation

D = kT¢ = kTp (47)

where p. is the inverse of §. In terms of submatrices, we have:

D" DcPt 3 Cl ccPf 1 _ P'IP l.‘.cl’t] 8
[Dcl’ Dr ]_ kT[CcP grP] =kT y_cP y.r ( )
The individual components of D and g are related by!®
DIP = kT{;‘ _ [;cPt . (;ﬂ’)—-l . ;cP]}A (49)
D = kT{ch - [gcl’ . (C()—l . ccPr]}—l (50)
DcP = — (;rl’)fl . §cP . D(P — _Dr . ;cP . (;l)fl (51)

We note in equation 51 that D and €° vanish at the same location. For a nonskew
particle (¢°© = 0), the centres of diffusion and reaction coincide exactly. For
screwlike particles (€°© # 0), it is shown by Wegener!® that the centres of diffusion
and reaction are generally in different places.

There are just two scalar friction coefficients for spherically isotropic particles:

ct - CTI, cro — CRI, cco = 0 (52)

For a sphere of radius g, they take the simple form
¢" = 6nna, TR = 8nna? 53)

consistent with equations 22 and 24 for DT and DR. In practice, it is found that
translation—rotation coupling effects for a single particle are not too important (less
than a few per cent), so long as the object has some symmetry elements.!® Only for
highly asymmetric particles (e.g., a half-turn of helix) is the effect very significant.
With more than one particle, however, translation—rotation coupling is important
even for spheres, as we shall see below.

B. Boundary Conditions: Stick versus Slip.—The Stokes formulae for the
translational and rotational coefficients of a spherical particle (equation 53) are
implicitly based on so-called ‘stick’ (‘non-slip’) boundary conditions. That is, the
relative tangential velocity component of fluid in contact with the rigid particle
surface is taken as zero. In practice, it is found that stick boundary conditions are
correct for large, solid, and impermeable particles immersed in a viscous medium.

18 W. A. Wegener, Biopolymers, 1981, 20, 303.
19 J. M. Garcia Bernal and J. Garcia de la Torre, Biopolymers, 1980, 19, 751.
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For a smooth spherical particle, at whose surface perfect slip occurs (e.g., a gas
bubble), the friction coefficients are given by

(T =4ma, F=0 (54

For a liquid drop of finite viscosity m; immersed in an unbounded continuum of
viscosity 1o, the value of {T lies between the pure slip and pure stick limits:

" = 2nnal(3 + 2no/MIIL + (Mo/MmI]™ (55)

In many real situations, the presence of surface-active agents makes the drop
surface viscoelastic, in which case T and {} approach the non-slip limits.2°

Protein molecules are relatively small, non-spherical, flexible, and partly
permeable to solvent; and so one might at first sight presume that rigid-sphere, stick
boundary conditions would be out of the question. This is fortunately, however, not
the case. In fact, the hydrodynamic properties of many protein molecules are
adequately represented by effective hard-sphere models, and the roughness of the
macromolecular surface usually means that stick boundary conditions are
appropriate. Nevertheless, it needs to be pointed out that, as over half the water in
contact with the protein surface is indistinguishable experimentally from pure
solvent, it has been suggested 2! that a large proportion of the slip surface (sic) is
between the vicinal water molecules and the protein, and not outside the first
monolayer as commonly assumed.

Globular proteins are somewhat porous due to imperfect packing of subunits
and topological surface irregularities. One possible way2? of mimicing porosity is
to relax partially the stick condition through a ‘slipping length’ defined by

v, = £(v/On) (56)

where v, is the tangential velocity component, and dv,/0n is its derivative normal to
the surface. The effective hydrodynamic radius a. of a sphere with this boundary
condition is

Ay = a1 + 2¢/a)][1 + 3(E/a)]™ (57)

where £ — oo in the pure-slip limit (¢f. n; = 0 in equation 55). According to
Wolynes and McCammon,?? the ratio &/a is typically 0.15 for a porous protein.

Summarizing, then, we should treat stick boundary conditions as the norm, with
full slip conditions only considered for species as small as solvent molecules, simple
ions, or polymer segments.2®> Use of semi-empirical partial-slip boundary
conditions has some intuitive appeal, but it is not rigorous except at a fluid—fluid
interface. With solid particles, any relaxation of normal stick boundary conditions

20 V. G. Levich, ‘Physicochemical Hydrodynamics’, Prentice-Hall, Englewood Cliffs, N.J,, US.A., 1962.
21 F. M. Richards, Ann. Rev. Biophys. Bioeng., 1977, 6, 151.

22 P, G. Wolynes and J. A. McCammon, Macromolecules, 1977, 10, 86.

23 P. G. Wolynes and J. M. Deutch, J. Chem. Phys., 1976, 65, 450, 2030.
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is really an admission that continuum hydrodynamic theory has broken down for
the problem under investigation.

C. Hydrodynamic Interactions between Particles.—Consider two freely-rotating
particles 1 and 2 acted on by forces F; and F, respectively. The particle velocities
are given by

vi=pnF + i Fy (58)
v, =gy F + py- Fy (59

where ;; (ij = 1,2) are translational pair mobility tensors. The tensors p', and p},
are equivalent to the single-particle tensors described above; u', and p%, are new
tensors arising specifically from the hydrodynamic pair interaction. For a pair of
identical spheres with centres at separation r, the tensors have the general form

wii(r) = ali(r) (rr/r?) + BY(r) [ — (rr/r)] (60)

where rr denotes the 3 x 3 dyad corresponding to vector r, and «j(r) and B}(r) are
scalar analytic functions of r = |r|. Mobility expressions are known?* as a function
of r to high accuracy with stick boundary conditions. The functions «' and ' can be
expanded as series in powers of (a/r),2* but at very close separations the series
converge slowly and asymptotic expressions must be used instead.!3

The functions «{{r) and B},(r) can be written explicitly in the form??

alf(r) = (4nna)™ Zo a¥ (afr)?Hi-i (61)
Bli(r) = (4rna)™ Z,o b¥ (afr)>r i (62)

Values of the expansion coefficients [al! (= a22), al? (= a?!), b}! (= b??)
and b2 (= b2')] are listed in Table 1 up to n = 5. The leading self-terms, a’
and b}', are simply the reciprocals of the single-particle friction coefficients
mentioned previously. Higher order self-terms represent the influence of the second
particle on the single-particle friction coefficient of the first. Notice that some of the
coefficients are exactly zero.

It is the cross-terms which are most important in Brownian kinetics, since these
determine the relative motions of the diffusing species. Under stick boundary
conditions, the leading cross-terms, al? and b}2, combine to give what is
commonly described in hydrodynamics as the Oseen tensor:26

D, = kT, = KT/8unn)l + (rr/r?)] (63)

24 D. J. Jeffrey and Y. Onishi, J. Fluid Mech., 1984, 139, 261. R. Schmitz and B. U. Felderhof, Physica, 1982,
113A, 90, 103; 1982, 116A, 163.

25 R. B. Jones and G. S. Burfield, Physica, 1985, 133A, 152.

26 C. W. Oseen, ‘Hydrodynamik’, Akademische Verlagsgellschaft, Leipzig, 1927.
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Table 1 Mobility expansion coefficients a and b (n = 0,5) for (A) stick and (B) slip
boundary conditions

a: 1 a’{l '11 b’]IZ

n A B A B A B A B

0 23 1 1 1 2/3 1 12 1/2
1 0 0 -3 0 0 0 3 0

2 -52 -1 0 0 0 0 0 0

3 13 -1 252 2 —1724 18 0 0

4 7 -1 =5 6 —5/6 1/5 0 0

5 —167/3 =5  —1312 14  —238 1/4 189/64  3/16

In the original derivation of equation 63, interacting elements were represented as
point sources of friction; better approximations can be regarded as allowing for the
effect of finite particle size on the hydrodynamic flow field. Extension of equation 63
to include expansion coefficients a}2 and 52 leads to the equation of Rotne and
Prager:27

12 = KTBrnn){[/ + (rv/r*)] + 2a*/3r*)[1 — 3(rr/r*)]} (64)

While the Rotne—Prager tensor is a better approximation than the Oseen tensor,
both are unsatisfactory at close separations (r — 2a). They overestimate the
tendency of particles to move towards (or away from) one another along the line of
centres; equation 63 is out by a factor of 10 for r ~ 2.01a. In the limit r — 2a, the
component * of D, along the line of centres actually vanishes (the relative friction
coefficient diverges to infinity). This means that, in the absence of colloidal
attractive forces, perfectly hard spheres can never touch (coagulate) in a continuum
solvent! The vanishing relative diffusion coefficient is due to very large velocity
gradients in the gap between spheres with stick boundary conditions. The
divergence in the friction coefficient with slip boundary conditions is much weaker,
having the form of a logarithmic singularity.?3

With more than two particles, things get more complicated, but the results can be
expressed in a formally similar way. Mazur and van Saarloos have given?® a
general scheme for an arbitrary number of spheres to any order in (a/r). Explicit
expressions to order (a/r)’ are obtained for the mobility tensors, rotational as well
as translational, and to this order three- and four-body interactions are included.
The dominant contributions to translation from clusters of N spheres (N > 2) are
of order r3¥ =3 As with the two-sphere case, certain powers of (a/r) are completely
absent [e.g., there is no term of order (a/r)’ in the expression for u'}.

D. Translation—Rotation Coupling—When several bodies are immersed in a

* It is probably worthwhile emphasizing here that subscripts on D , refer to particles 1 and 2, and not, as
earlier (see equations 26 and 29), to directional components of the diffusion matrix.

27 J. Rotne and S. Prager, J. Chem. Phys., 1969, 50, 4831.
28 P. Mazur and W. van Saarloos, Physica, 1982, 115A, 21.
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hydrodynamic medium, the frictional forces and torques on each one of them
depends on the translational and rotational movements of all the others.
Generalizing equations 44 and 45 to an N-sphere system, the frictional force and
torque on particle i is given by

N

fi==2 @i+ o) (69)
N

= =) (Ehevi+ G w) (66)
J

where the superscripts t, ¢, and r denote hydrodynamic couplings between
translation and translation, translation and rotation, and rotation and rotation,
respectively. As with the single particle (equation 48), the combination of friction
submatrices leads to a grand friction matrix related to grand mobility and diffusion

matrices:2°
Di; D; Wi B [Cb‘ ?J]l
= k| % B g} 25 67)
[D.?,- ij] [wi Wij 4R 4]

Individual components of [ D;;] and [(;;] are related by sets of equations equivalent
to those connecting the single-particle diffusion and friction tensors (equations 49—
51).

The leading cross-terms in the diffusion tensor for a pair of rigid spheres are as
follows:

D', = (kT/8an)r [ + (rr/rH)] + O(3) (68)
D5, = —(kT/8nn)r2e- (r/r) + OF®) (69)
DY, = (kT/16mn)r3[3(rr/r?) — 1] + OF®) (70)

We note that interparticle translation—rotation coupling (equation 69) is of shorter
range than rotation-rotation coupling (equation 70), but longer range than
translation—rotation coupling (equation 68). With slip boundary conditions, the
particles rotate freely, and so we have D}, = D}, = 0.

E. Particles Near a Plane Surface.—Since hydrodynamic interactions are of long
range in comparison to particle size, the properties of particulate systems are
strongly affected by boundary walls. The problem of one sphere in the vicinity of a
plane surface is a limiting case of the two-sphere problem. It therefore provides a
convenient system for testing the theories of hydrodynamic interaction in the
laboratory. Recently, Ambari and co-workers have measured 3° the magnitude of
the modified Stokes force f, exerted on a macroscopic sphere (a = 0.435 mm) with
centre O kept in magnetic levitation at a fixed distance / from the surface (see Figure

29 D. W. Condiff and J. S. Dabhler, J. Chem. Phys., 1966, 44, 3988.
30 A. Ambari, B. Gauthier-Manuel, and E. Guyon, J. Fluid Mech., 1984, 149, 235.
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2) using an optical feedback system. As the sphere approaches the wall with speed
v,, there is a change in frictional force given by

f. = —6nnav,8(e) (71)

where ea = | — a is the surface-to-surface separation. Within the experimental
uncertainties, the data are found to agree exactly with theoretical equations derived
for the cases of small3! and large3? separations:

_ f1l/e — (Ing)/5 + 09712 + ... —0
8e) =41 i 9/(8?le)+ €+ ... Ei > 1; (72)

The expression for close separations comes from lubrication theory,'* and the long-
range formula is an Oseen-type representation. With the macroscopic sphere
studied experimentally,®® the smallest value of € corresponded to a surface-to-
surface separation of ca. 8 um, well beyond the effective range of London/van der
Waals attractive forces. (With particles of colloidal size, of course, this would not be
the case.) At infinitesimally close separations, the frictional force diverges to infinity
and the corresponding diffusion coefficient vanishes.

f, X

Vi I €a
A YA A AR R Y
Figure 2 Macroscopic sphere of radius a with centre O at distance 1 from a plane surface. As

the sphere approaches the wall at speed v,, it experiences a frictional force f, at surface-to-
surface separation €a

There is less viscous resistance parallel to a plane wall than perpendicular to it.
For a sphere moving parallel to a plane surface with stick boundary conditions, the
frictional force f, is related to the speed v, by*?

fy, = — 6mnav,/[1 — (9a/161) + (a/21)* — .. ] (73)

31 R. G. Cox and H. Brenner, Chem. Eng. Sci., 1967, 22, 1753.
32 H. A. Lorentz, Abhandl. Theor. Phys. (Leipzig), 1907, 1, 23.
33 H. Faxen, Arkiv. Mat. Astron. Fys., 1923, 17, No. 27.
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The particle rotates with an angular velocity

®, = (30,/32a)(a/)* + ... (74)

the direction being the same as that for simple rolling along the wall. We see from
equation 74 that the strength of single-particle hydrodynamic translation-rotation
coupling drops off rapidly with the particle—surface separation.

Expressions have recently been presented ># for an arbitrary number of spheres
in the vicinity of a plane wall. The main point to note is that, for the same surface-to-
surface separation, the hydrodynamic effect of the wall is considerably greater than
that of another spherical particle. And even more so for a cluster of particles
between two plane walls.!3

5 Brownian Dynamics Simulation

Just as the motion of atoms in a simple liquid can be simulated by molecular
dynamics, the motion of particles in a collotdal dispersion can be computed
numerically by Brownian dynamics. (In the purely hydrodynamic regime, where
there is no Brownian movement, the term Stokesian dynamics * seems appropriate.)

A. Algorithm of Ermak and McCammon—In a system with colloidal inter-
particle forces, the Langevin-type equation of translational motion has the
form3®

3N 3N
mdvoi/de) = =Y Cho; + Fi + Y abix; (i = 1,3N) (75)
i=1 Jj=1

where m; is the particle mass associated with index i, v; is the velocity component in
direction i, F; is the sum of external and interparticle forces acting in direction i, and
the sum is over all 3N translational degrees of freedom (c¢f. the one-dimensional
Langevin equation, equation 11). The right-hand-side of equation 75 is a sum of
three terms: a frictional force, a systematic force, and a stochastic force. The
stochastic term depends on a set of coefficients {«};}, defined by

G = RT)'Y abod (76)
k

and a set of random numbers {x;} with a Gaussian distribution,
{xi0)x(0)> = 28,;6(2) 7

where 8,; is the Kronecker delta (= 1 for i = j, otherwise zero).

* The author first heard this term used in public by Professor J. F. Brady at the Euromech symposium in
Cambridge in April 1985 (see G. Bossis and J. F. Brady, J. Chem. Phys., 1984, 80, 5141).

34 C. W. J. Beenakker, W. van Saarloos, and P. Mazur, Physica, 1984, 127A, 451.
35 J. M. Deutch and L. Oppenheim, J. Chem. Phys., 1971, 54, 3547.
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A Brownian dynamics algorithm based on equations 75—77 was derived by
Ermak and McCammon.3% Particle displacements are given by

3N 3N
Ar; = Y (dD/or)At + (kTY' Y. DEFIAL + R(DAD, (i = 1,3N) (78)
i=1 j=1

where Ar = r; — r? is the change in particle co-ordinate during time-step A, R; is
the stochastic displacement in direction i, and superscript 0 denotes that the
quantity is evaluated at the beginning of the step. It is important to note that in the
algorithm defined by equation 78 instantaneous particle velocities are not specified
as such. Although the interval Ar is long compared with the characteristic time
associated with the solvent molecule motion, it must be short enough for quantities
Dj;and F; to be effectively constant during the simulation time-step. The stochastic
displacements are calculated from the set of equations:

Ri(AY) = Z oiX; (79
i=1
i-1 +
Cii = [D}? - z szk] (80)
k=1
Jj—1
oy = 071‘1[1):7‘ -y oikoik] i>) 81)
k=1
Xy =0, (X Xy = 28;At (82)

Because of the square root in equation 80, the calculation of o;; from D} is
generally the most time-consuming part of the simulation.

The application of the algorithm of Ermak and McCammon to a particular
problem requires specification of the configuration-dependent non-hydrodynamic
forces {F;} associated with the various physico-chemical interactions between the
Brownian particles. For instance, with electrostatically-stabilized colloidal
particles, the contributions to {F;} come from derivatives of the DLVO potentials
of mean force at the appropriate pair separations.3” If a particle is also subject to an
external force (e.g., gravity), this is added in as well. A DLVO-type potential is
suitable for describing the spherically-symmetric part of the protein—protein
interaction, but there may also be asymmetric contributions to the protein
potential arising, say, from highly charged, localized patches on the folded
macromolecular surface. Once spherical symmetry is lost, particles are subject to
torques as well as forces, which means that we must also consider the rotational
Brownian motion (see next section).

There are some important technical differences between molecular dynamics and
Brownian dynamics simulations. Molecular dynamics is based on Newton’s
equations of motion: energy is therefore conserved, and trajectories are time-
reversible. On the other hand, a stochastic equation of motion like equation 78
3¢ D. L. Ermak and J. A. McCammon, J. Chem. Phys., 1978, 69, 1352.

37 J. Bacon, E. Dickinson, and R. Parker, Faraday Discuss. Chem. Soc., 1983, 76, 165. G. C. Ansell, E.
Dickinson, and M. Ludvigsen, J. Chem. Soc., Faraday Trans. 2, 1985, 81, 1269.
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neither has a definite solution nor does it conserve energy. So, whereas total energy
fluctuations can be used to monitor the efficacy of a molecular dynamics
calculation, there is no such consistency check with Brownian dynamics. To ensure
that particle trajectories are sufficiently accurate for the purpose in question, all one
can do is demonstrate that average statistical properties are independent of the size
of the integration time-step. In both types of simulation, contributions to forces
{F;} can be truncated at pair separations beyond a certain ‘cut-off’ distance.
However, in Brownian dynamics, because the hydrodynamic interactions are of
long range, it is difficult to justify a particular ‘cut-off’ distance beyond which they
may be neglected.

B. A Generalized Algorithm.—It is straightforward to generalize the above
algorithm to include rotational Brownian motion and translational-rotation
coupling. Proceeding along the lines of equations 65 and 66, one can write down a
set of translational and rotational Langevin equations:3®

6N

3N 6N
m“(dv“/dl) = — Z Clijl)j - Z Liw; + Fi + Z %X j (i = L3N) (83)
i=1

J=3N+1 =1
3N 6N 6N

I(dojdn = =Y o, — Y Coy+ Ti+ Y ayx; (i=3N+1,6N) (84)
Jj=1 j N+1 j=1

= i=

Ji=3

In equation 84, I; is the moment of inertia associated with index i, and 7 is the sum
of external and interparticle torques acting in direction i. The equations 83 and 84
are interdependent since they share the same set of «;; coefficients defined by

Gy = (KT 'Y ainejn (85)

Translational and rotational motions are only fully decoupled when ¢f; = 0 for all
pairs of particles in the system.

Let us now switch to a set of generalized co-ordinates ¢; (i = 1,6N) in 6N-
dimensional position—orientation space (see equations 19 and 20). Combining
equations 83 and 84 into a single expression, we get a generalized Langevin
equation from which can be derived *° a generalized ‘moving-on’ routine:

6N 6N

Agi = Y. (9D%/ogpAt + (KT)™" Y. DF N + R(D%HA) (i = L6N)  (86)
i=1 Jj=1

where Ag; = g; — ¢ is the change in generalized co-ordinate during Az, and &, is
a generalized force component in direction i. Indices i and j from 1 to 3N refer to
translation; those from 3N + 1 to 6N to rotation. For spheres of uniform surface

roughness, D;; is independent of orientation, and so we have

38 P, G. Wolynes and J. M. Deutch, J. Chem. Phys., 1977, 67, 733.
39 E. Dickinson, S. A. Allison, and J. A. McCammon, J. Chem. Soc., Faraday Trans. 2, 1985, 81, 591.
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oD,0q; =0 (j = 3N+L6N) 87

In a system with rotational Brownian motion and translation—rotation coupling,
the stochastic displacement terms are given by equations 79—82 as before, but
DY is replaced by the grand diffusion tensor D,

C. Choice of Hydrodynamic Approximation—A few words seem appropriate on the
forms to be adopted for w;; (and therefore D;;) in a simulation of spherical Brownian
particles.

The Oseen and Rotne—Prager approximations, equations 63 and 64, are
computationally convenient, but they break down at close separations (r — 2a)
where lubrication theory must be used. Fortunately, in many systems of realistically
modelled Brownian particles, the problem is less severe than with simple hard
spheres; this is because pairs of particles are in fact never allowed to get very close
due to the influence of electrostatic interparticle repulsive forces. One disadvantage
of crude pairwise-additive Oseen hydrodynamics is that it sometimes leads to a N-
particle diffusion tensor that is not positive-definite. This is disastrous from the
simulation standpoint, since it implies that the stochastic weightings from
equations 79 and 80 are mathematically complex, and therefore physically absurd.
One way round the difficulty is to use®® a truncated Oseen interaction with ', = 0
for r > r_, where the effective cut-off distance r, is a decreasing function of the local
particle concentration. The Rotne—Prager tensor is well-behaved, insofar as it does
not suffer from non-positive-definiteness. And, like the Oseen tensor, it gives a
computationally convenient divergenceless diffusion tensor (V « D}; = 0), so that
gradient terms in equations 78 and 86 need not be evaluated, thus saving some
calculation time.

As mentioned previously, explicit expressions for u;; are available?® to order
(a/r)’, but their widespread use within Brownian dynamics simulations is likely to
be restricted owing to the computational expense of having to sum over all groups
of 3 and 4 particles for each time-step. In any case, recent calculations*° cast doubt
on whether in practice expressions to order (a/r)” give results in multi-particle
systems that are any more reliable than those to order (a/r)® (Rotne-Prager
approximation). One compromise solution*! is to use an effective hydrodynamic
pair tensor which allows for multi-body interactions implicitly via one or more
empirical screening constants which depend on the local particle concentration.
The idea here is that instead of having a sharp hydrodynamic cut-off,3” one has a
more gradual screening of the normal pair interaction. We note, however, that the
concept of hydrodynamic screening is only strictly applicable to immobile particles
immersed in a viscous medium.*?

The justification for using simple hydrodynamic approximations in many
Brownian dynamics problems comes from the fact that the rate processes are often
only weakly affected by changes in the hydrodynamic expressions. Only when

40 G. D. L. Phillies, J. Chem. Phys., 1984, 81, 4046.
4! 1. Snook, W. van Megen, and R. J. A. Tough, J. Chem. Phys., 1983, 78, 5825.
42 C. W. 1. Beenakker, Faraday Discuss. Chem. Soc., 1983, 76, 240.
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particles spend most of their time very close together (r — 2a < a) does one need to
be particularly careful about the exact form of the hydrodynamic interaction.>®

6 Protein Dynamics

So much for the principles; now to the practice. Most of what follows is forward-
looking: its aim is to point out what seems feasible in connection with the
application of Brownian dynamics simulation to protein diffusional motion. In the
case of the enzyme—substrate problem, some progress has already been made, but,
for the most part, the field is still virgin territory. The topics described below are not
meant to form a complete list. They just represent a few relevant and interesting
problems about which the author has become recently aware. The unifying theme is
Brownian dynamics with hydrodynamic interactions.

A. Enzyme-Substrate Encounters.—The enzyme-substrate combination is just
one of several types of ligand—receptor pairs involved in biological action.*® In the
simplest possible model, enzyme and substrate molecules are represented as
spherical Brownian particles with ‘reactive patches’ on parts of their surfaces. The
overall rate of many biochemical processes is determined by the kinetics of an initial
diffusional encounter between enzyme and substrate molecules, and the reaction is
said to be ‘diffusion controlled’. Amongst the factors that can affect the rate of
reactive binary collision are the charge distributions on both molecules, the
hydrodynamic interactions between the particles, the orientational dependence of
reactivity, and intramolecular structural fluctuations at and near the ‘active site’.
Some limited progress has been made in incorporating these effects into analytic
kinetic theories,** but it seems likely that the detailed distinguishing features of
complicated biochemical processes will be amenable only to numerical simulation
methods. An appealing feature of the simulation approach is the ability to make
steady and systematic progress by successively refining the assumed model.
Let us consider the reaction sequence

E + S == ES 5 products (88)
where E and S stand for enzyme and substrate respectively, and k, k" and k" are rate

constants. Under steady-state conditions (d[ES]/d¢ = 0), the transformation rate
into products is described by an effective rate constant

kege = kK [(K" + k') (89)

We have k¢ ~ k for a diffusion-controlled reaction (k’” > k’). When E and S are
spherically-symmetric, non-interacting particles, the reaction is described by the
bimolecular Smoluchowski rate constant**

k, = 4nr D %90)

43 J. A. McCammon, S. H. Northrup, and S. A. Allison, Com. Molec. Cell. Biophys., in press.
44 D. F. Calef and J. M. Deutch, Ann. Rev. Phys. Chem., 1983, 34, 493.
45 M. V. Smoluchowski, Phys. Z., 1916, 17, 557.
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where D is a diffusion coefficient, and r, is an encounter distance (roughly equal to
the sum of particle radii). Putting in some allowance for hydrodynamic effects,
together with a general centrosymmetric potential of mean force u(r) between E and
S, leads to the modified Smoluchowski expression,23:46

k, = 41:Uwr-2[z)(r)]‘lexp[u(r)/kT]dr]_ 1

€

where D is now a function of the pair separation r (equivalent to the component of
the pair diffusion tensor DY, along the line of centres).

Equation 91 represents more-or-less the limit of the analytic approach. When the
E-S interaction is more complex than that assumed above, the rate constant must
be evaluated numerically by averaging over diffusional trajectories of the substrate
in the field of a fixed enzyme target.*® To avoid having to simulate substrate paths
which wander well away from the enzyme, the diffusion space around E is divided
into two regions*’ (see Figure 3). In the outer region (» > p), E and S are far enough
apart for diffusion to be described adequately by equation 91; in the inner region
(r < p), however, interactions have a more complicated orientation dependence,
and therefore must be handled numerically. If each Brownian collision of S with the
active site on E leads to reaction, then it can be shown*’ that the rate constant is
given by

k = k(p)a{l — [(1 — «)k(p)/k(g)]}" ©2)

where k(p) and k(gq) are the values of k£ from equation 91 with r, = pand r, = g,
respectively. The quantity « represents the probability that a substrate molecule,
starting at r = p, and free to diffuse in inner and outer regions, will react before
reaching r = ¢. In the actual simulation, trajectories begin at r = p and terminate
on reaction or at r = ¢. From the fraction of events leading to reaction is calculated
the bimolecular rate constant k. Detailed analysis of particle trajectories provides
information about the reaction mechanism, i.e. whether or not S is ‘steered’ into
productive collisional orientations during the diffusional encounter.

To take a particular example, McCammon and co-workers*®4° have initiated a
series of simulations of increasingly realistic models of the diffusion-controlled
reaction of superoxide (O,) catalysed by the enzyme superoxide dismutase. The
enzyme molecule was represented as a sphere of diameter 6 nm having two small
reactive patches on opposite sides covering ca. 13% of the total surface area. A set
of five charges within the model enzyme particle was used to produce an
electrostatic field with monopole, dipole, and quadrupole components equivalent
to those generated by all 76 charged groups on the real protein. The O5 molecule
is modelled as a sphere of diameter 0.3 nm carrying a unit charge. Rate constants

46 S. H. Northrup and J. T. Hynes, J. Chem. Phys., 1979, 71, 871.

47 S. H. Northrup, S. A. Allison, and J. A. McCammon, J. Chem. Phys., 1984, 80, 1517.
48 8. A. Allison and J. A. McCammon, 1985, 89, 1072.

49 8. A. Allison, G. Ganti, and J. A. McCammon, Biopolymers, 1985, 24, 1323.
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Figure 3 Simulation diffusion space for the encounter between enzyme E and substrate S.
Distances p and q are the radii of the inner and outer diffusion regions (see text). The shaded
portion of E denotes the ‘active site’

calculated from equation 92 were based on averages over several thousand
trajectories with p = 30nm and ¢ = 50 nm, and the results were found to reproduce
successfully the gqualitative experimental features of the enzyme-catalysed
reaction.*® Using Debye-Hiickel theory to allow for electrostatic screening, it is
calculated in agreement with experiment that the rate constant first increases, and
then decreases to a plateau, as the ionic strength is increased (i.e. as electrostatic
interactions become of shorter effective range). It is postulated*? that the initial
increase in k is due to screening of long-range E-S repulsion, whereas the
subsequent decrease arises from screening of the shorter-ranged non-central forces
which act to steer the substrate into the active site.

The above results for O, + superoxide dismutase refer to simulations in
which hydrodynamic interactions were neglected altogether (D,, = 0). Using the
Oseen tensor with slip boundary conditions,* it has been shown*” that including
hydrodynamic interactions can lead to a reduction in simulated rate constant of ca.
30% in the absence of E-S attractive forces. In a separate Brownian dynamics
simulation of encounters between a spherical enzyme particle and a dumbell-dimer
substrate particle using a constraints algorithm (see later), it was found *2 that the
presence of hydrodynamic interactions does not much affect the steering
enhancements, but does lead to a fairly uniform decrease in the overall reaction
rate. As the structural complexity of enzyme and substrate molecules increases, it is
clear that the reaction kinetics is increasingly affected by orientational
considerations, as determined by the rotational Brownian motion and (with stick
boundary conditions) the coupling between translational and rotational
motions.

* With a small substrate ion of solvent molecule dimensions, as is the case here, anything other than slip
boundary conditions would seem inappropriate (see ref. 23 and 51).

50 A.Cudd and I. Fridovich, J. Biol. Chem., 1982, 257, 11443. E. D. Getzoff, J. A. Tainer, P. K. Weiner, P. A.
Zollman, J. S. Richardson, and D. C. Richardson, Nature (London), 1983, 306, 287.

51 R. Zwanzig and M. Bixon, Phys. Rev. A, 1970, 2, 2002.

52'S. A. Allison, N. Srinivasan, J. A. McCammon, and S. H. Northrup, J. Phys. Chem., 1984, 88, 6152.

444



Dickinson

B. Proteins at Electrode (and Related) Surfaces.—Protein electrochemistry offers
the opportunity for controlled electronic communication with a wide range of
biochemical processes. Using enzymes with redox-active sites, there is the
possibility of converting electron movement into specific substrate transformations.
The combination of immobilized glucose oxidase and a graphite electrode, for
instance, has potential application in the amperometric determination of glucose in
blood.33

Proteins appear to adsorb irreversibly at both synthetic and biological surfaces,
and it has long been held the view that reversible electrochemistry involving
proteins is not possible at conventional electrode surfaces. But, nevertheless, it is
known3* that reversible protein adsorption can occur if the protein is rigid and the
surface is hydrophilic, conditions which ought to be fulfilled in many
electrochemical situations involving redox proteins. In fact, recent work with
cytochrome ¢ at a gold electrode has shown®* that ‘good’ electrochemistry is
promoted in the presence of certain bifunctional organic compounds at the
electrode surface. Cytochrome ¢ is an example of a robust low-molecular-weight
globular protein whose biochemical function is to carry electronic charge between
the catalytic and energy transduction sites on the membrane of an organism.
Efficient kinetics of electron transfer depends on the establishment of relatively
long-lived, yet freely reversible, interactions of the protein, in vivo with its
physiological redox partners, and in vitro with the electrode surface.

As a specific example, let us consider the conversion of ferrocytochrome ¢ (A) to
ferricytochrome ¢ (B) at a rotating disc electrode.*® In the limit of fast mass
transport, the reaction is represented by the scheme

A .—‘ Aads ‘—— Bads ‘—’— B (93)

where k, is the rate of adsorption of reduced and oxidized forms, k, and k_, are the
potential-dependent rate constants for the forward and backward electron-transfer
reactions, k4 is the rate of desorption of reduced and oxidized forms, and p is the
areal concentration of adsorption sites on the modified electrode. For reaction at a
positive gold electrode (k. > k_.), values of the kinetic parameters are estimated 3¢
to be: k, =3 x 10* m s, k? =50 s7!, k, = 50 s7!, and p = 1.2 mol m™2
Reversible protein binding enhances the overall rate of the electrode reaction at the
modified electrode, but the reaction is very slow at the unmodified electrode. The
importance of the chemical nature of the electrode surface in inducing reversible
binding was demonstrated >’ by comparing electrochemistry at the polished ‘edge’
surface of pyrolytic graphite with that at the freshly-cleaved ‘basal plane’.
Cytochrome c electrochemistry at the hydrophilic edge is well-behaved, but at the
hydrophobic basal plane it is essentially irreversible.3’
53 A.E. G. Cass, G. Davis, G. D. Francis, H. A. O. Hill, W. J. Aston, I. J. Higgins, E. V. Plotkin, L. D. L.
Scott, and A. P. F. Turner, Anal. Chem., 1984, 56, 667.
54 3. Lyklema, Colloids Surf., 1984, 10, 33.
55 P. M. Allen, H. A. O. Hill, and N. J. Walton, J. Electroanal. Chem., 1984, 178, 69.

56 W. J. Albery, M. J. Eddowes, H. A. O. Hill, and A. R. Hillman, J. Am. Chem. Soc., 1981, 103, 3904.
57 F. A. Armstrong, H. A. O. Hill, and B. N. Oliver, J. Chem. Soc.. Chem. Commun., 1984, 976.
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To simulate the redox protein + electrode problem by Brownian dynamics, one
might proceed as follows. Assume that the redox protein is spherical (diameter ~ 4
nm) and has two ‘patches’ on its surface: one for electron transfer (patch Pg), the
other for electrostatic binding (Pg). Describe the protein interaction with the
surface as a sum of (a) a long-range, centrosymmetric, screened electrostatic
interaction and (b) a short-range, specific interaction between protein patch Py and
binding sites Sy on the surface (see Figure 4). Electron transfer is deemed to occur
when protein patch Py gets within some distance § of the surface. Trajectories can
be started with the particle centre at a distance / = p from the surface, and
terminated upon reaction or when / > g. The protein model just described can be
thought of as a crude representation of, for instance, spinach plastocyanin, a
photosynthetic ‘blue’ copper protein, much of whose net negative charge (at neutral
pH) is taken to be conservatively localized at the side of the molecule.*® [By way of
contrast, mitochondrial cytochrome ¢ has an overall positive charge located in close
proximity to the electron-transferring haem edge (i.e., for this protein Py and Py are
coincident).] As far as the surface binding sites are concerned, these could easily
represent positively-charged domains of stable chromium(iir) complexes, since it
has been shown®® that, even at low background electrolyte concentrations (< 0.01
mol dm™3), a chromium-modified graphite electrode is active towards plastocyanin.
A reasonable value for the electron-transfer distance & probably lies in the range
0.5—1.5 nm.

Y A A
7777777777777/ 777777777

Figured4 Representation of spherical redox protein P in vicinity of plane electrode surface with
binding sites Sg. The two patches on P are associated with electron transfer (Pg) and specific
electrostatic binding (Pg). The distances p and q are equivalent to the same quantities in Figure 3

As well as giving rate data, a Brownian dynamics simulation along the lines of
that described above could be used to determine the importance of translation—
rotation coupling effects as the redox protein diffuses at the interface. It is well-
known?3°~¢! that rates of diffusion-controlled biological processes are faster in two
dimensions than in three. In diffusion towards a small target of diameter 4 within a

°8 F. A. Armstrong, P. A. Cox, H. A. O. Hill, and A. A. Williams, J. Chem. Soc., Chem.
Commun., 1985, 1236.
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large space of dimensionality n and diameter d,, Adam and Delbriick have
expressed >° the time to capture as

6y = (&/D)f,(d,/d) %4

where the function f,(d,/d) depends on the dimensionality n. For d,/d > 1, f, is
linear in d,/d for n = 3; it has the form In(d,/d) for n = 2; and it is independent of
d,d for n = 1. So, for a constant diffusion coefficient D, there is a marked
enhancement on going from n = 3 to n = 2, but little change in going from n = 2
to n = 1. To permit protein motion on a one- or two-dimensional biopolymer
surface, the forces between protein and surface must be strong enough to guarantee
adsorption, but weak enough to enable the molecule to diffuse. In this connection,
small conformational fluctuations may play a role in the sliding of enzymes on the
surface of linear or planar biopolymers.5!

There are clearly similarities between diffusional processes at electrode and
membrane surfaces. The electrostatic aspects of redox-protein binding to a
negatively charged membrane surface has been demonstrated in a study®? of the
oxidation kinetics of cytochrome c, by bacterial photosynthetic reaction centres in
unilamellar phosphatidylserine vesicles. In NaCl solution of ionic strength 0.1 mol
dm™3 or less, the kinetic data suggest that the protein is restricted to the surface of a
single vesicle, and encounters reaction centres by two-dimensional diffusion. The
retarded oxidation rate at low electrolyte concentrations suggests that electrostatic
interaction between the positive haem-cleft face of the protein and the negative
membrane is sufficiently strong to restrict protein mobility. With increasing ionic
strength, however, mobile counter-ions shield the electrostatic interaction, and so
the protein diffuses more rapidly, though still mainly across the surface of the
vesicle. Above 0.1 mol dm™ NaCl solution, there is little protein-membrane
association, and, since the binding regions are oppositely charged, the reaction rate
falls—as it also does in solution, and in neutral phosphatidylcholine vesicles.®?

The mechanism of protein diffusion at a membrane or electrode surface will
depend on the nature of the protein—surface interaction. If the protein is only
weakly bound, one would expect a ‘hopping’ mechanism. With stronger binding, a
‘rolling’ or ‘sliding’ mechanism would be more likely, the former being favoured by
non-specific electrostatic protein—surface interactions, and the latter by specific
interaction with a mobile entity at the interface. From equation 74, we note that the
separation between protein and surface must be about one solvent molecule
diameter (~ 0.3nm)or less for there to be appreciable translation—rotation coupling.

C. Antibody Mobility and Antigen Binding.—Animals react adaptively against
foreign bodies (‘antigens’) by synthesizing specific neutralizing agents (‘antibodies’).

59 G. Adam and M. Delbriick, in ‘Structural Chemistry and Molecular Biology’, ed. A. Rich and N.
Davidson, Freeman, San Francisco, 1968, p. 198.

60 F. W. Wiegel and C. DeLisi, Am. J. Physiol., 1982, 243, R475.

61 E. Katchalski-Katzir, J. Rishpon, E. Sahar, R. Lamed, and Y. I. Henis, Biopolymers, 1985, 24, 257.

62 R. E. Overfield and C. A. Wraight, Biochemistry, 1980, 19, 3328.
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The commonest class of human antibody is immunoglobulin G (IgG), a Y-shaped
glycoprotein (ca. 1.5 x 10° daltons) whose structure is illustrated schematically in
Figure 5(a). Two identical globular regions known as Fab (after fragment antigen
binding’) are connected flexibly to a third globular region Fc (after ‘fragment
crystallizable’). It appears that the hinge angle 6 can take any value in the range
10—180°. Binding can take place at two separate antigen sites, either on a single
particle (bacterium or virus) or on two different ones [see Figure 5(b)]. In terms of
protein structure, IgG consists of two equivalent ‘light’ protein chains (~2.3 x 10*
daltons) and two equivalent ‘heavy’ chains (~35.0 x 10* daltons) linked by
disulphide bridges and non-covalent interactions.5® Conventionally, the chains are
subdivided into variable and constant domains as shown in Figure 5(c). When an
antigen binds to the antibody, it nestles in a groove or cleft formed at the contact of
the light and heavy chain variable domains. About 10 or so amino-acid residues are
thought to be involved in the binding region.5*

® ®

Figure 5 Representation of the structure of the antibody molecule IgG. (2) Simple three-centre
hydrodynamic model. At the hinge, which flexibly connects globular fragment Fc to binding
fragments Fab, the angle 0 can take up a wide range of values. (b) The binding of IgG to two sites
B on different antigen particles. (c) More detailed model showing light (L) and heavy (H)
polypeptide chains. The light chain has one constant region (C,) and one variable region (V,); the
heavy chain has three constant regions (Cyl, Cy2, and Cy3) and one variable region (V). The
hinge H consists of one or more disulphide interchain bonds. A is the antigen binding site

Antibody flexibility has been demonstrated experimentally using nanosecond
fluorescence spectroscopy.5*¢6 A fluorescent chromophore, specifically located at

63 G. W. Edelman and W. E. Gall, Ann. Rev. Biochem., 1969, 38, 415.

64 M. W. Steward, ‘Antibodies: Their Structure and Function’, Chapman & Hall, London, 1984.
65 J. Yguerabide, H. F. Epstein, and L. Stryer, J. Mol. Biol., 1970, 51, 573.

66 C. L. Lovejoy, D. A. Holowka, and R. E. Cathou, Biochemistry, 1977, 16, 3668.
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the antibody binding site, is excited with a short pulse of y-polarized light, and
fluorescence intensities polarized in the x- and y-directions, F, and F, respectively,
are measured as a function of time . A function

A(1) = [F(0) — F.(O)/[F) + 2F(1)] 95)

expresses how much the orientation of the transition moment has changed between
absorption and emission. It was found by Yguerabide et al.°® that A(¢) could be
approximated as a sum of two exponential terms:

A(1) = Ao[fsexp(—t/os) + frexp(—i/¢)]. (96)

In equation 96, ¢g and ¢, are short and long rotational correlation times, and 4, fs
and f; are constants. Taking ¢s = 33 ns as the correlation time of an isolated Fab
fragment, a fitted value of ¢, = 168 ns was interpreted as being due to the
rotational motion of the antibody molecule as a whole. [An unhydrated rigid
sphere with the volume of IgG is estimated to have a rotational correlation time of
@ = (6D®)! = 44 ns] It was inferred ®®> that the Fab portions of the intact
antibody are free to rotate over an angular range of ca. 33° in times of nanoseconds.
More recently, Lovejoy and co-workers have found ®® similar correlation times,
¢s = 33 ns and ¢, = 131 ns, again attributed to Fab segmental flexibility and
global antibody rotation, respectively. The flexibility of the IgG molecule is related
inter alia to the number of disulphide bonds in the hinge region [see Figure 5(c)]. In
a comparison of intact and reduced antibodies, it was found ¢’ that reduction of the
inter-heavy-chain disulphide bond increases significantly the internal flexibility of
the IgG molecule.

In modelling the IgG molecule as a flexibly connected three-sphere entity [as in
Figure 5(a)], torsional interactions between Fab and Fc fragments must be
consistent with the above correlation times, which can be computed directly in a
Brownian dynamics simulation. The precise structures of antigenic determinants
on most protein molecules are not known,®® but it does appear that interactions
normally extend over some 3—4 nm? of protein antigen surface. (See the report of
an X-ray crystallographic determination®® of the complex between egg-white
lysozyme and the Fab fragment of a monoclonal anti-lysozyme antibody.) In
simulating antibody-antigen encounters, as with the enzyme-substrate problem,
we can determine how sensitive is the rate constant to such factors as particle size
and shape, specific and non-specific electrostatic forces, and so on.

D. Other Protein Diffusional Processes
In biological membranes, various lipids and proteins are able to undergo lateral

67 L. M. Chan and R. E. Cathou, J. Mol. Biol,, 1977, 112, 653.

%8 D. C. Benjamin, J. A. Berzofsky, I. J. East, F. R. N. Gurd, C. Hannum, S. J. Leach, E. Margoliash, J. G.
Michael, A. Miller, E. M. Prager, M. Reichlin, E. E. Sercarz, S. J. Smith-Gill, P. E. Todd, and A. C.
Wilson, Ann. Rev. Immunol., 1984, 2, 67.

%% A. G. Amit, R. A. Mariuzza, S. E. V. Phillips, and R. J. Poljak, Nature (London), 1985, 313, 156.
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diffusion within the two-dimensional bilayer structure.’® There are two classes of
membrane protein: peripheral and integral. The former associate with membranes
predominantly through electrostatic interactions, and their diffusional motion
resembles that near a charged electrode surface (vide supra). Integral proteins lie
partially within the bilayer, where they exhibit extensive hydrophobic and
electrostatic interactions with each other and the surrounding lipid molecules.”!
Depending on the conditions, membrane proteins can exist in various states of
aggregation. Pair distribution functions derived from freeze-fracture pictures of
lipid bilayers resemble’? those from theoretical models of two-dimensional fluids.
Effective protein—protein potentials calculated from experimental pair distribution
functions are available’® for use in simulations.

The function of a membrane appears to be intimately related to its fluidity.”* In
the protein dynamics context, the temperature-dependent viscosity of the bilayer
modulates the activity of enzymes and transport-proteins by affecting their lateral
and rotational motions. To simulate the Brownian dynamics of membrane
proteins, an external potential field could be used to confine the particles to motion
in a plane. It would be interesting to compare simulated diffusion coefficients with
those measured in fluorescence and phosphorescence decay experiments.”%:76

Diffusion-controlled encounters occur in a wide range of assembly and
polymerization processes involving proteins. An important and well-studied
example is the assembly of monomeric G-actin (4.2 x 10* daltons) into polymeric
F-actin, a fibrous building block of muscle tissue. The mechanism is supposed to
involve a nucleation stage (trimers are the most likely candidates as nuclei),
followed by a polymerization stage to give a helical structure.””-7® Representations
of monomeric and polymerized actin suitable for use in a simulation study are
illustrated in Figure 6. Bonding between the roughly spherical G-actin molecules
occurs through specific interactions of the type a—b and c—d. Solvent conditions
sensitively affect the position of the F—G equilibrium,’® with electrostatic factors
particularly important. There is a ‘critical’ actin concentration for helical
polymerization which decreases with increasing ionic strength, reaches a minimum
at an optimum ionic strength of 0.1 M NaCl, and then goes up again with further
addition of electrolyte. At pH values close to the isoelectric point (pH = 4.7),
random globular aggregation is superimposed on regular polymerization to F-
actin. Divalent cations appear to have both specific and non-specific effects on the

7° M. D. Houslay and K. K. Stanley, ‘Dynamics of Biological Membranes’, Wiley, Chichester, 1982.

71 G. Benga and R. P. Holmes, Prog. Biophys. Molec. Biol., 1984, 43, 195.

72 L. T. Pearson, S. I. Chan, B. A. Lewis, and D. M. Engelman, Biophys. J., 1983, 43, 167; L. T. Pearson, J.
Edelman, and S. 1. Chan, Biophys. J., 1984, 45, 863.

73 J. Naghizadeh, in ‘Lecture Notes in Physics No. 172, ed. K.-H. Bennemann, F. Brouers, and D.
Quitmann, Springer-Verlag, Berlin, 1982, p. 247.

74 ‘Membrane Fluidity' (Biomembranes, vol. 12), ed. M. Kates and L. A. Manson, Plenum, New York,
1984.

75 R. Peters and R. J. Cherry, Proc. Natl. Acad. Sci. USA, 1982, 79, 4317.

76 C. J. Restall, R. E. Dale, E. K. Murray, C. W. Gilbert, and D. Chapman, Biochemistry, 1984, 23, 6765.

77 F. Oosawa and M. Kasai, in ‘Subunits in Biological Systems’, ed. S. N. Timasheff and G. D. Fasman,
Marcel Dekker, New York, 1971, part A, p. 261.

78 E. Korn, Physiol. Rev., 1982, 62, 672.

79 M. Kasai, S. Asakura, and F. Oosawa, Biochim. Biophys. Acta, 1962, 57, 13.
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thermodynamics and the kinetics. At low ionic strengths, G-actin can be
polymerized below the critical actin concentration by application of a shear flow
field which presumably acts to promote nucleation.®?

G F

Figure 6 Equilibrium between monomeric (G) and oligomeric (F) forms of actin. In this model,
aggregates are held together by specific attractive interactions of the type a—b and c—d

Another possible area for Brownian dynamics is in modelling the folding and
unfolding of globular proteins.®!-#2 Here we have in mind the long-time diffusional
motions, rather than the rapid conformational fluctuations.®3:8¢ That is, the
refolding of a denatured protein molecule may be envisaged as the merging of
embryo nuclei by a diffusion—collision process. This type of mechanism is
consistent with a model35-8¢ of a globular protein consisting of hydrophobic
clusters loosely connected by covalent bonds, and held in fixed spatial orientations
by interacting polar groups on the cluster surfaces. Such a model protein would
thermally denature in two stages: an initial phase involving movement of intact
clusters relative to one another, followed by a second phase involving disruption of
hydrophobic clusters. Co-operativity would come predominantly from the second
phase. Also of interest, in addition to thermal denaturation, is protein unfolding at a
solid or fluid interface, the kinetics of which is important in the field of food
colloids.®”

7 Simulation of Subunit Models

Complex biological structures can be modelled as a collection of connected
subunits. To simulate the dynamics of structures which possess some degree of
rigidity, it is necessary to place constraints on the relative motions of different
subunits within the total structure. Allison and McCammon have described 88 a

80 3, Borejdo, A. Muhlrad, S. J. Leibovich, and A. Oplatka, Biochim. Biophys. Acta, 1981, 667, 118.

81 ‘Protein Folding’, ed. R. Jaenicke, Elsevier/North-Holland, Amsterdam, 1980.

82 N. G, Ann. Rev. Biophys. Bioeng., 1983, 12, 183.

83 R. J. P. Williams, Biol. Rev., 1979, 54, 389.

84 CIBA Foundation Symposium No. 93, ‘Mobility and Function in Proteins and Nucleic Acids’, Pitman,
London, 1982.

85 K. Wiithrich and G. Wagner, Trends Biochem. Sci., 1978, 3, 227.

8¢ K. Wiithrich, H. Roder, and G. Wagner, in ref. 81, p. 549.

87 E. Dickinson and G. Stainsby, ‘Colloids in Food’, Applied Science, London, 1982.

88 S. A. Allison and J. A. McCammon, Biopolymers, 1984, 23, 167.
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rigorous method of imposing constraints in Brownian dynamics. The procedure is
based on the SHAKE molecular dynamics algorithm devised by Ryckaert et al.,%°
and subsequently improved by Ciccotti ez al.?°

In a rigid body of N spherical subunits, N(N — 1)/2 inter-subunit distances are
invariant. Neglecting gradient terms, the unconstrained Brownian dynamics step is
[see equation 78 and note change from scalar to vector notation (3N — N)1:

N
ri=r+ (AkT) Y D -F} + R(At) (i = L,N) 97
ji=1
where the prime denotes the new, unconstrained co-ordinates of subunit i, and F3 is
the total force acting on subunit j, but excluding forces of constraint. The corrected
co-ordinate r; is given by

N
dri=r—ri=(AKT)Y DY-G? (98)

i=1
where G? is the net force of constraint acting on subunit j. Allison and
McCammon have shown 88 that 8r; can be represented as

b= 3. HY[d2 — ()] ©9)

p=1

where r},, = r,, — r,, the labels m and n refer to subunits restricted by the p*
constraint, dma is the constrained distance between m and n, NC is the total number

of constraints, and
H, = [(D}, — D) - 10, )/[4rom + (Do — D) = 1] (100)

Enforcement of the p'* constraint partially destroys those enforced previously. So it
is necessary to repeat the cycle of enforcing all constraints until they are satisfied
within a specified tolerance level. The procedure reduces to that of Ryckaert ez al.®°
in the absence of hydrodynamic interactions, i.e. when

D'y = D8l (101

The Brownian dynamics algorithm with constraints has been tested for an
isolated wormlike chain®! and a pair of rigid cubic octamer particles.>® The
method offers the opportunity for modelling globular proteins and bacterial viruses
as multisubunit structures like those described by Garcia de la Torre and
Bloomfield.?2-°3 Using the above algorithm, we can see how, for instance, a model

89 J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys., 1977, 23, 327.

90 G. Ciccotti, M. Ferrario, and J.-P. Ryckaert, Mol. Phys., 1982, 47, 1253.

?1'S. A. Allison and J. A. McCammon, Biopolymers, 1984, 23, 363.

92 J. Garcia de la Torre and V. A. Bloomfield, Biopolymers, 1977, 16, 1779; 1978, 17, 1605.
93 J. Garcia de la Torre and V. A. Bloomfield, Quart. Rev. Biophys., 1981, 14, 81.
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of the antibody-antigen encounter could be successively refined by considering a
sequence of multisubunit structures of increasing complexity.

8 Concluding Remarks

Research in colloid science has led to a resurgence of interest in the Brownian
motion of small interacting particles.®* This article has tried to show that the
concepts used in colloid science have a broader biological relevance. In particular,
from statistical mechanics and fluid mechanics is derived a Brownian dynamics
computational algorithm suitable for simulating diffusional processes involving
entities like enzymes, immunoglobulins, and redox proteins. A protein is modelled
as a single Brownian sphere, or a cluster of connected spheres, and account is taken
of electrostatic and other forces to whatever level of complexity is feasible under the
circumstances.

The development of reliable electrostatic potentials of mean force between
proteins and their subunits is a requirement for substantial progress in this field.
The electrostatic interaction between closely approaching proteins can be
represented °*> by so-called ‘high-dielectric’ models, and numerical results of this
type have been recently reported by Matthew and co-workers®S for the putative
reaction complex between flavodoxin and ferricytochrome c. Their calculations
show that the two molecules begin to become orientated significantly by the
electrostatic field at separations closer than ca. 0.7 nm, when the interaction free
energy is some 2 kT less than the sum of free energies of the isolated molecules. An
allowance for electrostatic screening accounts for the experimental increase in
flavodoxin—cytochrome c association rate at lower ionic strengths.®” Cases where
electrostatic interactions between protein subunits are important include salt
bridges in haemoglobin and the superstructure of virus-coat proteins.®®

Computer experiments are most useful when they can be compared directly with
real experiments. Amongst the techniques available for studying colloidal particle
motion,?’ quasi-elastic light scattering is particularly useful. It is encouraging to
note, therefore, that a recent light-scattering study®® of aggregating proteins gives
information on aggregate structures and rate constants which are suitable for
comparing with Brownian dynamics simulations. The techniques of nuclear
magnetic resonance'®® and quasi-elastic neutron scattering!®! are also being
increasingly applied to protein dynamics, and it seems likely that they will also
provide useful data for comparing with the computer simulations, and with
analytic theories of the many-body hydrodynamic problem.!°?
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Appendix
Tensor Multiplication* —The dot product of tensor T and vector v, in matrix
notation, is given by

Ty, Tia T v, T11v1 + T1202 + Thsvs
Tv = T2 T2z Tas 2 = Ta1v1 + Ta202 + Ta3vs | = »TH (Al
T3 T3y Tas v3 T3101 + T3202 + T3303

where Tt is the transpose of T. The dot product is sometimes written more
concisely using the summation convention, i.e.

(T-v) = T, (A2)

where it is agreed that the indices run from 1 to 3. The inner product of two second-
order tensors S and T is itself a second-order tensor:

(S- T)m = Sim T (A3)
The double inner product of § and T is given by
S:T=T«S+T) =S5, T (A4)

where Tr is the trace. The double inner product of a third-order tensor B and a
second-order tensor T is a vector:

B:T), = Bim Tk (T:B); = TimBrmii (AS)
The cross product of tensor T and vector v is a tensor:
(T x g = — TiEpgb, O X TNy = €50, Tk (A6)

In equation A6, € is the Levi-Civita density.

* For further details see, for instance, the book ‘Cartesian Tensors’ (Ellis Horwood, Chichester, 1982) by
A. M. Goodbody, from which the nomenclature adopted here was taken. (There is a summary of tensor
manipulation, with particular reference to fluid mechanics, in the Appendix to ref. 13.)
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